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ABSTRACT 

It is well known that there are planar sets of Hausdorff dimension greater than 
l which are graphs of functions) i.e., all their vertical fibres consist of I point. We 
show this phenomenon does not occur for sets constructed in a certain "regular" 
fashion. Specifically) we consider sets obtained by partitioning a square into 4 sub- 
squares, discarding l of them and repeating this on each of the 3 remaining 
squares, etc.; then almost all vertical fibres of a set so obtained have Hausdorff 
dimension at least ½. Sharp bounds on the dimensions of sets of exceptional fibres 
are presented. 

§1. Introduction 

Consider  the ensemble  ~- o f  subsets F o f  the unit  square  constructed as follows 

(see Fig. 1). Par t i t ion the unit  square  into four  congruent  subsquares ,  and discard 

one o f  them.  App ly  the same opera t ion,  appropr ia te ly  scaled, to each o f  the three 

remaining squares,  with no  constra ints  on the relative posi t ions o f  the four  dis- 

carded subsquares.  Repeat  this opera t ion  ad inf ini tum, obta ining in the limit a set 

F E 'Y. (For  a precise defini t ion,  see section 3.) 

H.  Furstenberg conjectured [private communicat ion]  that  for  all F E cV, "mos t "  

fibres 

(1.1) F x = {y E [0,11 I (x ,y )  • F} 

have positive H a u s d o r f f  dimension.  It is well known that  every F E 'Y has dimen- 

sion (log 3)/( log 2), but  this does not  imply the conjec ture - -  see section 2. The  ob-  

ject o f  this note  is to  p rove  the following: 

TheOREM 1. For all F E ~ ,  dim(Fx)  > ½, for  almost all x E [0,1] with respect 

to Lebesgue measure. 

(In this paper ,  d im denotes  H a u s d o r f f  d imension. )  
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Fig.  1. 
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THEOREM 2. 

(1.2) 

where 

(1.3) 

How large can the set of  exceptional fibres be? 

(i) For all F E q: and 0 <_ ct <_ ~ we have 

dim[x E [0,1] [dim(Fx) -< ot] _< h(ct) 

h(ot) = - ix  log2 ot - (1 - or)log2(1 - or), h(0) = 0 

is the binary entropy function. 

In particular, 

dim{x[dim Fx = 0} = 0. 

(ii) There exists F* E q: for  which 

(1.4) dim[x[dim(Fx*) = ot } = h(ct) ,  for  all 0 <_ c~ <_ 1. 

The point of  these results is that they hold for all F E %. The situation for "al- 

most all" F has been studied extensively ([DG],[Fa],[MW]). It turns out that if 

F E q: is chosen "at random" then, with probability 1, almost all fibres have di- 

mension log(3/2)/log 2. See Proposition 3 in section 2 for a precise statement. All 

these results are proved in section 3, after the necessary background is discussed 

in section 2. Section 4 contains an interpretation of  Theorem 1 in terms of  random 

walks on coloured trees. 

§2. Background and further results 

The dimensions of  a fibre of  a plane set in a random direction was determined 

by Marstrand [M]. In particular, his result implies the following. Let F E ~- and 

3' = d im(F)  = log 3/log 2. Denote by l(a, O) the line through the point a in direc- 

tion 0. Then with probability 1, 

(2.1) d i m ( F n  l(a,O)) = 7 - 1, 
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where a E F is chosen according to normalized 7-dimensional Hausdorff  measure 

on F, and 0 is chosen independently and uniformly. For fibres in afired direction, 

an example of Mattila [Mat., example 7.1] shows there exists a plane set of Haus- 

dorff  dimension 2, with all its fibres in one direction consisting of  at most one 

point. Self-similar fractals are known to behave more regularly. 

DEFINITION. The Minkowski dimension Mdim(E) of E C [0,1] is defined by 

(2.2) M d i m ( E ) = l i m s u p ~ ( l o g # [ l < - j < - N ] E f ) [ J N 1  J 

This quantity appears, in different guises, under the names "box dimension," "frac- 

tal index," etc. For any Borel set E C [0,1], it is immediate that 

(2.3) dim(E) _~ Mdim(E) 

but strict inequality may occur. 

In [Fll, it is shown that equality holds in (2.3) for compact sets invariant under 

an endomorphism of the circle. Recently F. Ledrappier [private communication] 

showed that for compact sets invariant under certain toral endomorphisms, the 

Hausdorff  dimension and Minkowski dimension coincide for almost all their fi- 

bres in a fixed direction. See [KP] for applications of this result. In our case the 

situation is different. 

PROPOSITION 3. Denote 3' = log 3/log 2. 

(i) For all F E q: 

(2.4) ~l _< dim(Fx) _< Mdim(Fx) _< 3' - 1, 

for almost all x with respect to Lebesgue measure m. 
(ii) Select a random F E %, by choosing randomly, independently, and with 

equal probabilities, which subsquare to discard from every square appearing in the 

construction ofF. 
Then with probability 1, 

dim(Fx) = Mdim(Fx) = 3, - 1 

(iii) There exists F* E q: for which 

dim(F*) = Mdim(F*) = 

(iv) There exists ff E q: such that 

dim(P~) = ! 2, 

for a.e. x[m].  

for almost all x [ m ]. 

Mdim(ffx) = 3  ̀- 1 

for almost all x [ m ]. 
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The example in part (iv) of the proposition exhibits the maximal gap which can 

occur between the Hasdorff  dimension and Minkowski dimension for almost all 
fibres of F E qr. On individual fibres the disparity can be greater. 

PROI'OSmON 4. Given F E oF, consider the following "greedy algorithm" for  

selecting a fibre Fx. o f  E Choose the binary digits of  x* successively, so as to 
maximize the number o f  squares o f  each size in F which intersect Fx*. Then 

Iog(3/2) 
for  alI F E oF, Mdim(Fx-) >- - -  (clearly), 

log 2 
(2.5) 

but 

(2.6) for  some F E q:, Fx* is countable while Mdim(Fx*) = 1. 

For a more precise description of the algorithm and for a proof of  the propo- 

sition, see section 4. 

We shall need some tools from dimension theory. The first is an extension, due 

to Davies, of a classical lemma of  Frostman (see [C, chapter II]). Let H a denote 

B-dimensional Hausdorff  measure. 

FROSTMAN'S LEMMA. I f  B C [0,1] is a Borel set for which Ha(B) > O, then 

there exists a probability measure Iz carried by a compact subset o f  B and satisfying 

(2.7) /~([a,b]) <_ [b - al m for [a,b] C [0,1]. 

The second tool is a lemma of Billingsley (see [B] or [Y]) slightly adapted to our 

purpose. 

(2.8) Denote by Cn(y) the binary interval [ J - 1 2 ,  ) , containing y 

where j = [2"yJ. 

B[LLnq6SLEY'S LEm,in. Let v be a probability measure on [0,1 ]. Assume A C 

[0,1 ] is a Borel set satisfying 

(2.9) p(A) > 0 and A C I y l l i m i n f  - l ogv (Cn(y ) )  >__ o~/. 
,,--,o~ n log 2 ) 

Then dim(A) >- or. 

Finally, to compute the dimensions in Theorem 2 we need the following fact. 
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LE~A.A 5. [M] For any compact plane set F, dim(Fx) is a Borel measurable 

function of  x. 

PROOF. We know that dim(Fx) < ot iff  for some rational q < or, for all 

rational e > 0 there exist n > 1 and rational open intervals 11 . . . . .  In such that 

~"]jn= 11610 < E and 

(2.10) Fx C 0 6. 
j=l 

Since the set of points x satisfying (2.10) is open, it follows that [xldim Fx < ~} 

is a Borel set. • 

§3.  P r o o f s  

We first formalize the definition of q:. Let • be the collection of  functions 

oo 

~o: U 10,1]" x [ 0 , 1 l " -  10,112 • 
n = 0  

Define 

(3.1) F(¢ )  = [ ( x , y ) I v n  >_ I x ,y. {O,11, 

~o(xl . . . . .  xn - l ,Y l , . . .  ,Yn-I) ~ (xn,Y~)}, 

where x = Z ~' x.  2-~ and similarly for y. 

Then 

(3.2) q- = {F(~)I~o e ~] .  

Notice that when computing the dimension of the vertical fibres Fx for F E rE, we 

may assume that at all stages of the construction of F, the subsquare discarded is 

one of the two "top" ones. In other words, letting 

(3.3) q-o = {F(~o) I~o ecI ' ,  Vn~o(xl . . . . .  x,,,Yi . . . .  ,Yn) = (*,1)] 

it is easily seen that for any F E q:, some P E q-o satisfies 

(3.4) dim(Fx) = dim(Fx) for all x E [0,1] 

(see [F2]). 
Given F = F(¢)  E q:o and x = Z ~  x .2 - " ,  z = Y,~* z .2 - "  which are not binary 

rationals, denote 
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(3.5) 7rx(Z) = ~ y ,2 -"  
.=1 

where y ,  are defined inductively: 

(3.6) or I is defined by ~p(O) = (o1,1), and then 

f O, 01 = X 1 , 
Yl 

l ZI~ Ol =it: X1. 

If  Yl . . . . .  Y.-1 are already defined, then o. = o.(Xl . . . . .  x . - l ; z l  . . . . .  z . - l )  is 

determined by 

~O(Xl . . . . .  x.-1,yl  . . . . .  Y.- i)  = (a . ,1)  (3.7) 

and 

f 
y n = J o ,  a. = Xn, 

/. Zn, On~Xn. 

Finally, let 

(3.8) 7r(x,z) = (x, rx(Z)).  

Note that if m denotes Lebesgue measure on [0,1], then rmr~ -1 is a measure on the 

fibre Fx, and (m x rn)Tr -1 is a measure carried by F. 

PROOF OF THEOREM 1. Choose (x ,z)  E [0,1] 2 randomly according to Le- 

besgue measure m x m. Define y = ~rx(z) and {o,} as in (3.7). By the definition 

of  ~rx, 

(3.9) mr~-l (C,  (y)) = 2 -zT,=, ~®~  

( Q  denotes sum mod 2). 

Now ak is a function of  (xl . . . . .  Xk-I,Z~ . . . . .  Zk-~) SO the random variables 

{Ok ® Xk}k~ are independent unbiased bits. Thus 

(3.10) _1 ~ (ok 0)Xk)-~ ½ for a.e. ( x , z ) E  [0,1] 2. 
Hk=l 

Using (3.9), this means that for a.e. x[m] the set 

(3.11) A(x) = y E Fx] ~ I - log  m~r~l(C.(y))l 
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satisfies 

(3.12) 

Billingsley's lemma implies 

l 
(3.13) dim(A (x)) = - 

2 

which proves Theorem 1. 

PROOF OF THEOREM 2. 

(3.14) 

273 

rmr;- l (A(x) )  = 1. 

for a.e. x [ m ]  

(i) Fix 0 _< ~ _< ~ and F E q:. Let 

f~(~) = [x~  [0,1] [dim(Fx) _< ~}. 

#(f~(~)) =0. 

PROOf oF CLAIM. Using the notation preceding Theorem 1, denote 

(where ak = ok(x~ . . . . .  xk_~,z~ . . . . .  z~-l)). For every z E [0,11 the map 

(3.19) x ~ ~-] ek 2 -k ,  ek = Xk (~ ak, 
k=l 

preserves Lebesgue measure and therefore also Hausdorff dimension (see the proof 

of Theorem 1). Consequently for fixed z 

(3.2o) dim{x[(x,z) ~B} dim ek2-klekE [0,11,1iminf 1 = -- ~k<OZ . 

n~ n k=l 

CLAIM. 

(3.16) 

then 

(3.17) 

For any/~ < dim(fl(a)) ,  Frostman's lemma provides a probability measure g 

satisfying 

(3.15) #(f~(a)) = 1, g[a ,b]  _< I b - a ]  ~ for [a,b] C [0,1]. 

Thus part (i) of the theorem is a consequence of the following 

If  # is a probability measure on [0,1], satisfying for some ~ > h ( a )  

#[a ,b]  _< J b - a [  ~ for all [a,b] C [0,1], 



274 I. BENJAMINI AND Y. PERES Isr. J. Math. 

It is well-known fact, due essentially to Besicovitch, that the set on the right- 

hand side of (3.20) has dimension h ( a ) .  See [Caj, example 8.2] and the references 

therein. Since/3 > h (ct), the definition of Hausdorff measure and (3.16) imply that 

for any fixed z, 

(3.21) ~[xl(x,z) E B] = O. 

By Fubini 

(3.22) (/~ x m)(B) = 0 

so that 

(3.23) m~-'{y[(x,y) E r (B)]  = 0 for a.e. x[#] .  

Now by the definition (3.18) of B and formula (3.9) we know 

1 
(3.24) (x,y) ~ r(B) = lim inf [-logmxxl(C,,(y))] >_ or. 

,-.® n log 2 

Applying Billingsley's lemma and (3.23) shows that 

(3.25) dim(Fx) >__ ~ for a.e. x[/~] 

which proves the claim (3.17). 

(ii) Define F* E q: by discarding at each stage of the construction the upper 

left subsquare, i.e. 

(3.26) F'= [ (n~-~,= x,,2-",~= y,,2-" ) ¥n(x,,,y,,) , (O,1) I . 

F* is the squared version of the well-known Sierpinski gasket. 

For any x = ~,,~'x,,2-", applying Billingsley's lemma to the measure ma'Z ~ 

shows 

(3.27) dim(Fx*) = lim inf _1 ~ xk. 
n - ~  r/ k = l  

Finally, the discussion following formula (3.20) proves (t.4). • 

PROOF OF PROPOSITION 3. (i) The only inequality we have to show is 

(3.28) Mdim(Fx) _< 3' - 1 for a.e. x [ m ] ,  
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and this is well known to follow from the fact that F is covered by 3 n squares of  

side 2 -n, for every n ___ 1. Indeed if we had e > 0 such that 

(3.29) m { x [ M d i m ( F x )  > 3' - 1 + 2~} = 8 > O, 

then by Egorov's theorem, for sufficiently large n we would have at least -~82 ~ 

binary intervals of  length 2 -n on the x-axis above which F intersects more than 

2 n<*-l+') standard binary squares. Since 

(3.30) ~82 ~(~+') > 3 ~ for n large enough, 

assumption (3.29) implies a contradiction. 

(ii) Fix any x E [0,1 ]. If F E • is selected randomly, the fibre Fx may be con- 

sidered as a random Cantor set constructed as follows. Partition the unit interval 

in two halves; with probability 1 keep only the left half, with probability ~ keep 

only the right, and with probability ~ keep both. Repeat the same operation in 

each of  the remaining halves, etc. Basic facts about branching processes [AN, 

chapter 1] imply that Mdim(Fx) = 3' - 1 almost surely. The result for Hausdorff  

dimension is slightly harder, but is contained in a much more general theorem of 

Mauldin and Williams [MW]. An application of  Fubini completes the proof of  (ii). 

(iii) The same F* employed in Theorem 2(ii) (see (3.26)) will do. The verifica- 

tion is immediate. 

(iv) First we construct F (~) E • such that 

(3.31) dim(Fxtl)) = ff.'l Mdim(F~ I)) = ~ [(3' - 1) + !]2 

for a.e. x [ m ] .  
I I I I Start by discarding the upper right subsquare (~, ] x (~, ]. We concentrate now 

on the two left squares, St (the top left) and Sb (bottom left). Pick a rapidly in- 

creasing sequence of  integers {ny lj%l. For the first nl "generations" of  the con- 

struction (i.e. until squares of  side 2 -n~ are discarded) discard squares in St 

randomly, as in (ii), and in Sb always discard the upper left subsquare as in (iii). 

For the next n2 generations reverse the procedure, discarding squares in St 

as in (iii) and in Sb as in (ii). Continue in the same manner, with the strategy 

between generations I + ~/k~11 ni and ~/k= I n~ determined by the parity of  k. If  
i--* oo 

ni+i/ni -)  o% then standard properties of  Hausdorff  dimension ([B],[Caj]) and 

branching processes ([AN]) show that for a.e. x E [0,½], (3.31) holds. The lower 

right square [-~, I] x [0,-~] is treated exactly like the whole unit square, i.e. start 

by discarding its upper right square, etc. This gives (3.3 I) for a.e. x E [0, I ]. Now, 

instead of dividing each vertical fibre in two and switching the constructions of  (ii), 
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(iii) repeatedly between the two halves, we partition each fibre into 2 k segments. 

On one of them the construction proceeds as in (iii), on all the rest as in (ii). The 

location of the distinguished segment is rotated cyclically among the 2 k possibil- 

ities: for the first nl generations it is the first segment, then for n2 generations the 

second, etc. 

In this way a set F ok) E qr is created for which 

(3.32) dim(Fx tk)) = 2,! Mdim(F~ k)) = 2-k.~ + (1 - 2 - k )  • (~ / -  1) 

for a.e. x E  [0,1]. 

To get the full power of (iv) increase gradually the value of k in the above con- 

struction, for instance proceeding as in F (k) between generations 1 + ~.,j~l nj and 
2k+l 

Zj=~ nj. • 

Ex_~n, Ln. The set F* appearing in Proposition 3(iii) satisfies dim(F~) _< ~ for 

a.e. x G [0,1], but definitely not for all x. We now construct F '  E q% which does. 

Let { n i Ij%~ be a rapidly increasing sequence of integers, and let [ kj 1j%1 be a se- 

quence in which every positive integer appears infinitely often. Specifically, we 

require 

(3.33) nJ+---2 --, o% nj > k i .  
nj 

Between generations nj + 1 and ni+l in the construction of  F ' ,  discard the upper 

subsquare corresponding to the kj-th bit Ykj of the y coordinate in a square (this 

bit is constant on a binary square of side 2-" for n > nj, by (3.33)). Precisely, dis- 

card the upper right subsquare if Ykj = 1, and the upper left subsquare otherwise. 

This defines F'. 

Fix any x = ~ xn2-". For any k _> 1, there exists e = e (x, k) E 10,1 } such that 

1 ~J+' 
(3.34) lim inf ~ 11x,=~ I -< ~-- 

J ~  /'/j+ 1 n=l  
kj=k 

Now for all y = Zk~l Yk 2 - k  E F], except one point, Yk = ~ (X, k )  for some k >_ 1, 

so it follows from well-known properties of  Hausdorff  dimension [Caj] that 

dim(F~) _< ~ for a l l x E  [0,1]. 

REU.AP.KS. (1) It is quite easy to construct a set F E  • such that 

log(3/2) 
(3.35) dim(Fx) = Mdim(Fx) = - -  for all x except one point. 

log 2 
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We conjecture that (3.35) holds for almost all F E  if: in the sense of  Proposition 

3(ii). We can verify this for Minkowski dimension. 

(2) Projections of  random sets F E q: (and generalizations) are studied in the pa- 

pers of  Dekking and Grimmett [DG] and Falconer [Fa]. 

§4. Colored trees 

The trees we consider are connected graphs on a countable vertex set V = 

U.%0 V~ (disjoint union) such that Vo = [Vo] and every v E V~+~ is connected to a 

unique ~ E V~. We say v is a son of  0 and call Vo the root. Our trees will be sub- 

trees of  the 3-tree T3 for which every vertex has precisely 3 sons. 

DEFINITIONS. (1) Let h > 0. The ~,-walk [L] on a tree T is the Markov chain 

[Y, }h%0 with transition probabilities 

(4.1) 
h 1 P[Y~+'=~lY~=w]=x+d' P[Y~+'=wilY"=w]-x+d 

(1 < _ i < d )  

where [ wiJd=l are the sons of  w, and ~ the father. In particular, X = 1 gives the 

nearest-neighbor symmetric random walk on T. 

(2) A 2-coloring X of  T3 is a function from the vertex set of  T3 to [0,1]. A 

restricted 2-coloring is a 2-coloring for which both colors appear among the sons 

of  every vertex. 

(3) Given a 2-coloring X of  T3, any sequence ~ = [e~ }~%1 E {0,1 }N determines 

a subtree T(X,~) as follows. A vertex W o f  T3 is in T(X,~) if 

(4.2) X ( W l )  = ~l,  X(W2)  = £2 . . . . .  X ( W n )  = 6-n 

where v0, w~, w 2 ..... wn_l, w~ = w is the unique geodesic connecting the root and 

w. With these notations, Theorem 1 implies 

COROLLARY 6. Let 0 < ~, < ~ and let X be any restricted 2-coloring o f  Ta. For 

almost all ~ E {0,1} N with respect to product  measure (1,½)N, the )~-walk on 

T(X, ~) is transient. The constant ,f2 cannot be replaced by a larger constant. 

PROOF. To every restricted 2-coloring X of T3, a fractal F E  'To can be associ- 

ated. Attach the root Vo to [0,1] 2. Assume a vertex w in T3 is attached to a binary 

square S and wl, w2, w3 are the sons of  w. If ~,~=1 X(w/) = 1 discard the upper 
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right subsquare of S, attach the vertex colored "1" to the lower right subsquare and 

the other two vertices to the remaining subsquares. Deal symmetrically with the 

case ~3i= l X (wi) = 2, and continue inductively. Any color sequence [e~ }~1 which 

is not eventually constant corresponds to the fibre Fx of  F, where x = ~*=1 en 2-n. 

In [L], R. Lyons studied the branching of a tree, a notion closely related to 

Hausdorff  dimension. Theorem 1 implies that for almost all ~ E 10,1 iN, the tree 

T(X, ~) has branching number ,~  (in the terminology of [L, §2]). Now [L, theo- 

rem 4.3] completes the proof. • 

RE~tARK. Most of the results in this paper hold for more general constructions 

than that defining q~. For instance, if one deals in the corollary above with restricted 

/-colorings of  the k-tree, the critical constant x/2 is replaced by (k - l + l)l/k As 

no new ideas appear in this generalization, we omit it. 

PROOF OF PROPOSITION 4. Applying the correspondence in the previous corol- 

lary, the "greedy algorithm" appears as follows. Given a 2-coloring X of T3, select 

the color Et according to the coloring of most vertices in level 1. If  colors 

e~ . . . . .  En-~ have been selected, they determine a subtree T tn-~) of T3, with n-th 

level V(n).  Now let 

1 
(4.3) e n = l  if ~ X(V)>--g lV(n)  i, and e n = 0  otherwise. 

vE V(n) 

Continuing inductively, this defines a sequence e { n}n=l ~ {0,11N. By construc- 

tion, the n-th level of T(x,e)  has at least (3)n vertices. 

We now define a restricted 2-coloring Xo as follows. Xo(Vo) is arbitrary. Assume 

Xo has been defined already on levels 1Io, V~ . . . . .  Vn of T3. The greedy algorithm 

selects accordingly a color sequence E1 . . . . .  en, which determines a subtree Ttn) of 

T3. Denote by an the number of vertices in level n of Ttn), and assume they are 

numbered 1 . . . . .  a,. For each vertex with index _< la  n + 1, color two of its sons 

"0" and the other "1". Reverse this for the other vertices. 

In the next level, number the vertices so that vertices of lower index in level n 

have sons of lower index in level n + 1, and continue inductively. 

For the resulting coloring x0, the greedy algorithm selects a sequence {~n]~' = 

of colors. It is easily seen that the tree T(xo,e ) has only countably many infinite 

geodesic rays emanating from its root (compare [BP, §5, example 1]). Utilizing the 

correspondence in Corollary 6 completes the proof. 
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EXAMPLE. There exists a (non-restricted) 2-coloring X~ of  T3 such that: 
(i) At any level, at most 2 of  the vertices are colored in the same color. 

(ii) For any ~ E 10,11 N, the tree T(XI,E ) consists of  at most a unique infinite 

geodesic ray of  T3. 

CONSTRUCTION (SKETCH). Define x~ inductively so that, for any binary se- 

quence (el, ~2 . . . . .  ~2k), the subtree of T3 it determines consists of  a geodesic seg- 

ment v0, w~, wE . . . . .  wk of length k, followed by a copy of  a subtree of  T3, rooted 

at wk. • 
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